翻訳と辞書
Words near each other
・ Feeble
・ Feeble-minded
・ Feebly compact space
・ Feechopf
・ FEED
・ Feed
・ Feed 'em and Weep
・ Feed (Anderson novel)
・ Feed (film)
・ Feed (Grant novel)
・ Feed additive
・ Feed and Forage Act
・ Feed ban
・ Feed conversion ratio
・ Feed dogs
Feed forward (control)
・ Feed grain
・ Feed Her to the Sharks
・ Feed horn
・ Feed icon
・ Feed Jake
・ Feed line
・ Feed Magazine
・ Feed me
・ Feed Me (film)
・ Feed Me Bubbe
・ Feed Me Oil
・ Feed Me to the Wolves
・ Feed Me Weird Things
・ Feed Me with Your Kiss


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Feed forward (control) : ウィキペディア英語版
Feed forward (control)

Feed-forward, sometimes written feedforward, is a term describing an element or pathway within a control system which passes a controlling signal from a source in its external environment, often a command signal from an external operator, to a load elsewhere in its external environment. A control system which has only feed-forward behavior responds to its control signal in a pre-defined way without responding to how the load reacts; it is in contrast with a system that also has feedback, which adjusts the output to take account of how it affects the load, and how the load itself may vary unpredictably; the load is considered to belong to the external environment of the system.
In a feed-forward system, the control variable adjustment is not error-based. Instead it is based on knowledge about the process in the form of a mathematical model of the process and knowledge about or measurements of the process disturbances.
Some prerequisites are needed for control scheme to be reliable by pure feed-forward without feedback: the external command or controlling signal must be available, and the effect of the output of the system on the load should be known (that usually means that the load must be predictably unchanging with time). Sometimes pure feed-forward control without feedback is called 'ballistic', because once a control signal has been sent, it cannot be further adjusted; any corrective adjustment must be by way of a new control signal. In contrast 'cruise control' adjusts the output in response to the load that it encounters, by a feedback mechanism.
These systems could relate to control theory, physiology or computing.
== Overview ==
With feed-forward control, the disturbances are measured and accounted for before they have time to affect the system. In the house example, a feed-forward system may measure the fact that the door is opened and automatically turn on the heater before the house can get too cold. The difficulty with feed-forward control is that the effect of the disturbances on the system must be accurately predicted, and there must not be any unmeasured disturbances. For instance, if a window was opened that was not being measured, the feed-forward-controlled thermostat might still let the house cool down.
The term has specific meaning within the field of CPU-based automatic control. The discipline of “feedforward control” as it relates to modern, CPU based automatic controls is widely discussed, but is seldom practiced due to the difficulty and expense of developing or providing for the mathematical model required to facilitate this type of control. Open-loop control and feedback control, often based on canned PID control algorithms, are much more widely used.〔(【引用サイトリンク】url=http://www.isa.org/Content/ContentGroups/Motion_Control2/Departments1/Motion_Fundamentals/200227/20020421.pdf )
There are three types of control systems: open loop, feed-forward, and feedback.
An example of a pure open loop control system is manual non-power-assisted steering of a motor car; the steering system does not have access to an auxiliary power source and does not respond to varying resistance to turning of the direction wheels; the driver must make that response without help from the steering system. In comparison, power steering has access to a controlled auxiliary power source, which depends on the engine speed. When the steering wheel is turned, a valve is opened which allows fluid under pressure to turn the driving wheels. A sensor monitors that pressure so that the valve only opens enough to cause the correct pressure to reach the wheel turning mechanism. This is feed-forward control where the output of the system, the change in direction of travel of the vehicle, plays no part in the system. See Model predictive control.
If you include the driver in the system, then she does provide a feedback path by observing the direction of travel and compensating for errors by turning the steering wheel. In that case you have a feedback system, and the block labeled "System" in Figure(c) is a feed-forward system.
In other words, systems of different types can be nested, and the overall system regarded as a black-box.
Feedforward control is distinctly different from open loop control and teleoperator systems. Feedforward control requires a mathematical model of the plant (process and/or machine being controlled) and the plant's relationship to any inputs or feedback the system might receive. Neither open loop control nor teleoperator systems require the sophistication of a mathematical model of the physical system or plant being controlled. Control based on operator input without integral processing and interpretation through a mathematical model of the system is a teleoperator system and is not considered feedforward control.〔〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Feed forward (control)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.